📑   P4: Language Translation

In this project, you’re going to take a peek into the realm of neural network machine translation. You’ll be training a sequence to sequence model on a dataset of English and French sentences that can translate new sentences from English to French.

In [1]:
%%html
<style>
@import url('https://fonts.googleapis.com/css?family=Orbitron|Roboto');
body {background-color: azure;}
a {color: cadetblue; font-family: Roboto;}
h1, h2 {color: #48D1CC; font-family: Orbitron; text-shadow: 4px 4px 4px #ccc;}
h3, h4 {color: cadetblue; font-family: Roboto; text-shadow: 4px 4px 4px #ccc;}        
span {text-shadow: 4px 4px 4px #ccc;}
div.output_prompt, div.output_area pre {color: slategray;}
div.input_prompt, div.output_subarea {color: cadetblue;}      
div.output_stderr pre {background-color: azure;}  
div.output_stderr {background-color: slategrey;}     
</style>
<script>
code_show = true; 
function code_display() {
    if (code_show) {
        $('div.input').each(function(id) {
            if (id == 0 || $(this).html().indexOf('hide_code') > -1) {$(this).hide();}
        });
        $('div.output_prompt').css('opacity', 0);
    } else {
        $('div.input').each(function(id) {$(this).show();});
        $('div.output_prompt').css('opacity', 1);
    };
    code_show = !code_show;
} 
$(document).ready(code_display);
</script>
<form action="javascript: code_display()">
<input style="color: cadetblue; background: azure; text-shadow: 4px 4px 4px #ccc;" \ 
type="submit" value="Click to display or hide code cells">
</form>
In [3]:
hide_code = ''
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import os
import pickle
import copy
import numpy as np

import tensorflow as tf
from tensorflow.python.layers.core import Dense

from distutils.version import LooseVersion
import warnings

import itertools
import collections
In [4]:
hide_code = ''
# https://github.com/udacity/deep-learning/blob/master/language-translation/helper.py
CODES = {'<PAD>': 0, '<EOS>': 1, '<UNK>': 2, '<GO>': 3 }

def load_data(path):
    """ Load Dataset from File"""
    with open(os.path.join(path), 'r', encoding='utf-8') as f:
        return f.read()

def preprocess_and_save_data(source_path, target_path, text_to_ids):
    """Preprocess Text Data.  Save to to file."""
    # Preprocess
    source_text = load_data(source_path)
    target_text = load_data(target_path)

    source_text = source_text.lower()
    target_text = target_text.lower()

    source_vocab_to_int, source_int_to_vocab = create_lookup_tables(source_text)
    target_vocab_to_int, target_int_to_vocab = create_lookup_tables(target_text)

    source_text, target_text = text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int)

    # Save Data
    with open('preprocess.p', 'wb') as out_file:
        pickle.dump((
            (source_text, target_text),
            (source_vocab_to_int, target_vocab_to_int),
            (source_int_to_vocab, target_int_to_vocab)), out_file)
In [5]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/helper.py
def load_preprocess():
    """Load the Preprocessed Training data and return them in batches of <batch_size> or less"""
    with open('preprocess.p', mode='rb') as in_file:
        return pickle.load(in_file)

def create_lookup_tables(text):
    """Create lookup tables for vocabulary"""
    vocab = set(text.split())
    vocab_to_int = copy.copy(CODES)

    for v_i, v in enumerate(vocab, len(CODES)):
        vocab_to_int[v] = v_i

    int_to_vocab = {v_i: v for v, v_i in vocab_to_int.items()}

    return vocab_to_int, int_to_vocab
In [6]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/helper.py
def save_params(params):
    """Save parameters to file"""
    with open('params.p', 'wb') as out_file:
        pickle.dump(params, out_file)

def load_params():
    """Load parameters from file"""
    with open('params.p', mode='rb') as in_file:
        return pickle.load(in_file)

def batch_data(source, target, batch_size):
    """Batch source and target together"""
    for batch_i in range(0, len(source)//batch_size):
        start_i = batch_i * batch_size
        source_batch = source[start_i:start_i + batch_size]
        target_batch = target[start_i:start_i + batch_size]
        yield np.array(pad_sentence_batch(source_batch)), np.array(pad_sentence_batch(target_batch))

def pad_sentence_batch(sentence_batch):
    """Pad sentence with <PAD> id"""
    max_sentence = max([len(sentence) for sentence in sentence_batch])
    return [sentence + [CODES['<PAD>']] * (max_sentence - len(sentence))
            for sentence in sentence_batch]
In [7]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def _print_success_message():
    print('Tests Passed')

def test_text_to_ids(text_to_ids):
    test_source_text = 'new jersey is sometimes quiet during autumn , \
    and it is snowy in april .\nthe united states is usually chilly during july , \
    and it is usually freezing in november .\ncalifornia is usually quiet during march , \
    and it is usually hot in june .\nthe united states is sometimes mild during june , \
    and it is cold in september .'
    test_target_text = 'new jersey est parfois calme pendant l\' automne , \
    et il est neigeux en avril .\nles états-unis est généralement froid en juillet , \
    et il gèle habituellement en novembre .\ncalifornia est généralement calme en mars , \
    et il est généralement chaud en juin .\nles états-unis est parfois légère en juin , \
    et il fait froid en septembre .'

    test_source_text = test_source_text.lower()
    test_target_text = test_target_text.lower()

    source_vocab_to_int, source_int_to_vocab = create_lookup_tables(test_source_text)
    target_vocab_to_int, target_int_to_vocab = create_lookup_tables(test_target_text)

    test_source_id_seq, test_target_id_seq = text_to_ids(test_source_text, test_target_text, 
                                                         source_vocab_to_int, target_vocab_to_int)

    assert len(test_source_id_seq) == len(test_source_text.split('\n')),\
        'source_id_text has wrong length, it should be {}.'.format(len(test_source_text.split('\n')))
    assert len(test_target_id_seq) == len(test_target_text.split('\n')), \
        'target_id_text has wrong length, it should be {}.'.format(len(test_target_text.split('\n')))

    target_not_iter = [type(x) for x in test_source_id_seq if not isinstance(x, collections.Iterable)]
    assert not target_not_iter,\
        'Element in source_id_text is not iteratable.  Found type {}'.format(target_not_iter[0])
    target_not_iter = [type(x) for x in test_target_id_seq if not isinstance(x, collections.Iterable)]
    assert not target_not_iter, \
        'Element in target_id_text is not iteratable.  Found type {}'.format(target_not_iter[0])

    source_changed_length = [(words, word_ids)
                             for words, word_ids in zip(test_source_text.split('\n'), test_source_id_seq)
                             if len(words.split()) != len(word_ids)]
    assert not source_changed_length,\
        'Source text changed in size from {} word(s) to {} id(s): {}'\
        .format(len(source_changed_length[0][0].split()), 
                len(source_changed_length[0][1]), source_changed_length[0][1])

    target_missing_end = \
    [word_ids for word_ids in test_target_id_seq if word_ids[-1] != target_vocab_to_int['<EOS>']]
    assert not target_missing_end,\
        'Missing <EOS> id at the end of {}'.format(target_missing_end[0])

    target_bad_size = [(words.split(), word_ids)
                       for words, word_ids in zip(test_target_text.split('\n'), test_target_id_seq)
                       if len(word_ids) != len(words.split()) + 1]
    assert not target_bad_size,\
        'Target text incorrect size.  {} should be length {}'.format(
            target_bad_size[0][1], len(target_bad_size[0][0]) + 1)

    source_bad_id = [(word, word_id)
                     for word, word_id in zip(
                        [word for sentence in test_source_text.split('\n') for word in sentence.split()],
                        itertools.chain.from_iterable(test_source_id_seq))
                     if source_vocab_to_int[word] != word_id]
    assert not source_bad_id,\
        'Source word incorrectly converted from {} to id {}.'\
        .format(source_bad_id[0][0], source_bad_id[0][1])

    target_bad_id = [(word, word_id)
                     for word, word_id in zip(
                        [word for sentence in test_target_text.split('\n') for word in sentence.split()],
                        [word_id for word_ids in test_target_id_seq for word_id in word_ids[:-1]])
                     if target_vocab_to_int[word] != word_id]
    assert not target_bad_id,\
        'Target word incorrectly converted from {} to id {}.'\
        .format(target_bad_id[0][0], target_bad_id[0][1])

    _print_success_message()
In [8]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_model_inputs(model_inputs):
    with tf.Graph().as_default():
        input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, \
        source_sequence_length = model_inputs()

        # Check type
        assert input_data.op.type == 'Placeholder',\
            'Input is not a Placeholder.'
        assert targets.op.type == 'Placeholder',\
            'Targets is not a Placeholder.'
        assert lr.op.type == 'Placeholder',\
            'Learning Rate is not a Placeholder.'
        assert keep_prob.op.type == 'Placeholder', \
            'Keep Probability is not a Placeholder.'
        assert target_sequence_length.op.type == 'Placeholder', \
            'Target Sequence Length is not a Placeholder.'
        assert max_target_sequence_length.op.type == 'Max', \
            'Max Target Sequence Length is not a Placeholder.'
        assert source_sequence_length.op.type == 'Placeholder', \
            'Source Sequence Length is not a Placeholder.'

        # Check name
        assert input_data.name == 'input:0',\
            'Input has bad name.  Found name {}'.format(input_data.name)
        assert target_sequence_length.name == 'target_sequence_length:0',\
            'Target Sequence Length has bad name.  Found name {}'.format(target_sequence_length.name)
        assert source_sequence_length.name == 'source_sequence_length:0',\
            'Source Sequence Length has bad name.  Found name {}'.format(source_sequence_length.name)
        assert keep_prob.name == 'keep_prob:0', \
            'Keep Probability has bad name.  Found name {}'.format(keep_prob.name)

        assert tf.assert_rank(input_data, 2, message='Input data has wrong rank')
        assert tf.assert_rank(targets, 2, message='Targets has wrong rank')
        assert tf.assert_rank(lr, 0, message='Learning Rate has wrong rank')
        assert tf.assert_rank(keep_prob, 0, message='Keep Probability has wrong rank')
        assert tf.assert_rank(target_sequence_length, 1, 
                              message='Target Sequence Length has wrong rank')
        assert tf.assert_rank(max_target_sequence_length, 0, 
                              message='Max Target Sequence Length has wrong rank')
        assert tf.assert_rank(source_sequence_length, 1, 
                              message='Source Sequence Lengthhas wrong rank')

    _print_success_message()
In [9]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_encoding_layer(encoding_layer):
    rnn_size = 512
    batch_size = 64
    num_layers = 3
    source_sequence_len = 22
    source_vocab_size = 20
    encoding_embedding_size = 30

    with tf.Graph().as_default():
        rnn_inputs = tf.placeholder(tf.int32, [batch_size,
                                                 source_sequence_len])
        source_sequence_length = tf.placeholder(tf.int32,
                                                (None,),
                                                name='source_sequence_length')
        keep_prob = tf.placeholder(tf.float32)

        enc_output, states = encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob,
                   source_sequence_length, source_vocab_size,
                   encoding_embedding_size)

        assert len(states) == num_layers,\
            'Found {} state(s). It should be {} states.'.format(len(states), num_layers)

        bad_types = [type(state) for state in states if not isinstance(state, tf.contrib.rnn.LSTMStateTuple)]
        assert not bad_types,\
            'Found wrong type: {}'.format(bad_types[0])

        bad_shapes = [state_tensor.get_shape()
                      for state in states
                      for state_tensor in state
                      if state_tensor.get_shape().as_list() not in [[None, rnn_size], [batch_size, rnn_size]]]
        assert not bad_shapes,\
            'Found wrong shape: {}'.format(bad_shapes[0])

    _print_success_message()
In [10]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_decoding_layer(decoding_layer):
    batch_size = 64
    vocab_size = 1000
    embedding_size = 200
    sequence_length = 22
    rnn_size = 512
    num_layers = 3
    target_vocab_to_int = {'<EOS>': 1, '<GO>': 3}

    with tf.Graph().as_default():

        target_sequence_length_p = tf.placeholder(tf.int32, (None,), name='target_sequence_length')
        max_target_sequence_length = tf.reduce_max(target_sequence_length_p, name='max_target_len')

        dec_input = tf.placeholder(tf.int32, [batch_size, sequence_length])
        dec_embed_input = tf.placeholder(tf.float32, [batch_size, sequence_length, embedding_size])
        dec_embeddings = tf.placeholder(tf.float32, [vocab_size, embedding_size])
        keep_prob = tf.placeholder(tf.float32)
        state = tf.contrib.rnn.LSTMStateTuple(
            tf.placeholder(tf.float32, [None, rnn_size]),
            tf.placeholder(tf.float32, [None, rnn_size]))
        encoder_state = (state, state, state)

        train_decoder_output, infer_logits_output = decoding_layer( dec_input,
                                                   encoder_state,
                                                   target_sequence_length_p,
                                                   max_target_sequence_length,
                                                   rnn_size,
                                                   num_layers,
                                                   target_vocab_to_int,
                                                   vocab_size,
                                                   batch_size,
                                                   keep_prob,
                                                   embedding_size)

        assert isinstance(train_decoder_output, tf.contrib.seq2seq.BasicDecoderOutput),\
            'Found wrong type: {}'.format(type(train_decoder_output))
        assert isinstance(infer_logits_output, tf.contrib.seq2seq.BasicDecoderOutput),\
            'Found wrong type: {}'.format(type(infer_logits_output))

        assert train_decoder_output.rnn_output.get_shape().as_list() == [batch_size, None, vocab_size], \
            'Wrong shape returned.  Found {}'.format(train_decoder_output.rnn_output.get_shape())
        assert infer_logits_output.sample_id.get_shape().as_list() == [batch_size, None], \
             'Wrong shape returned.  Found {}'.format(infer_logits_output.sample_id.get_shape())

    _print_success_message()
In [11]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_seq2seq_model(seq2seq_model):
    batch_size = 64
    vocab_size = 300
    embedding_size = 100
    sequence_length = 22
    rnn_size = 512
    num_layers = 3
    target_vocab_to_int = {'<EOS>': 1, '<GO>': 3}

    with tf.Graph().as_default():

        dec_input = tf.placeholder(tf.int32, [batch_size, sequence_length])
        dec_embed_input = tf.placeholder(tf.float32, [batch_size, sequence_length, embedding_size])
        dec_embeddings = tf.placeholder(tf.float32, [vocab_size, embedding_size])
        keep_prob = tf.placeholder(tf.float32)
        enc_state = tf.contrib.rnn.LSTMStateTuple(
            tf.placeholder(tf.float32, [None, rnn_size]),
            tf.placeholder(tf.float32, [None, rnn_size]))

        input_data = tf.placeholder(tf.int32, [batch_size, sequence_length])
        target_data = tf.placeholder(tf.int32, [batch_size, sequence_length])
        keep_prob = tf.placeholder(tf.float32)
        source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length')
        target_sequence_length_p = tf.placeholder(tf.int32, (None,), name='target_sequence_length')
        max_target_sequence_length = tf.reduce_max(target_sequence_length_p, name='max_target_len')

        train_decoder_output, infer_logits_output = seq2seq_model(  input_data,
                                                   target_data,
                                                   keep_prob,
                                                   batch_size,
                                                   source_sequence_length,
                                                   target_sequence_length_p,
                                                   max_target_sequence_length,
                                                   vocab_size,
                                                   vocab_size,
                                                   embedding_size,
                                                   embedding_size,
                                                   rnn_size,
                                                   num_layers,
                                                   target_vocab_to_int)

        # input_data, target_data, keep_prob, batch_size, sequence_length,
        # 200, target_vocab_size, 64, 80, rnn_size, num_layers, target_vocab_to_int)

        assert isinstance(train_decoder_output, tf.contrib.seq2seq.BasicDecoderOutput),\
            'Found wrong type: {}'.format(type(train_decoder_output))
        assert isinstance(infer_logits_output, tf.contrib.seq2seq.BasicDecoderOutput),\
            'Found wrong type: {}'.format(type(infer_logits_output))

        assert train_decoder_output.rnn_output.get_shape().as_list() == [batch_size, None, vocab_size], \
            'Wrong shape returned.  Found {}'.format(train_decoder_output.rnn_output.get_shape())
        assert infer_logits_output.sample_id.get_shape().as_list() == [batch_size, None], \
             'Wrong shape returned.  Found {}'.format(infer_logits_output.sample_id.get_shape())

    _print_success_message()
In [12]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_sentence_to_seq(sentence_to_seq):
    sentence = 'this is a test sentence'
    vocab_to_int = {'<PAD>': 0, '<EOS>': 1, '<UNK>': 2, 'this': 3, 'is': 6, 'a': 5, 'sentence': 4}

    output = sentence_to_seq(sentence, vocab_to_int)

    assert len(output) == 5,\
        'Wrong length. Found a length of {}'.format(len(output))

    assert output[3] == 2,\
        'Missing <UNK> id.'

    assert np.array_equal(output, [3, 6, 5, 2, 4]),\
        'Incorrect ouput. Found {}'.format(output)

    _print_success_message()
In [13]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_process_encoding_input(process_encoding_input):
    batch_size = 2
    seq_length = 3
    target_vocab_to_int = {'<GO>': 3}
    with tf.Graph().as_default():
        target_data = tf.placeholder(tf.int32, [batch_size, seq_length])
        dec_input = process_encoding_input(target_data, target_vocab_to_int, batch_size)

        assert dec_input.get_shape() == (batch_size, seq_length),\
            'Wrong shape returned.  Found {}'.format(dec_input.get_shape())

        test_target_data = [[10, 20, 30], [40, 18, 23]]
        with tf.Session() as sess:
            test_dec_input = sess.run(dec_input, {target_data: test_target_data})

        assert test_dec_input[0][0] == target_vocab_to_int['<GO>'] and\
               test_dec_input[1][0] == target_vocab_to_int['<GO>'],\
            'Missing GO Id.'

    _print_success_message()
In [14]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_decoding_layer_train(decoding_layer_train):
    batch_size = 64
    vocab_size = 1000
    embedding_size = 200
    sequence_length = 22
    rnn_size = 512
    num_layers = 3

    with tf.Graph().as_default():
        with tf.variable_scope("decoding") as decoding_scope:
            # dec_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(rnn_size)] * num_layers)

            dec_embed_input = tf.placeholder(tf.float32, [batch_size, sequence_length, embedding_size])
            keep_prob = tf.placeholder(tf.float32)
            target_sequence_length_p = tf.placeholder(tf.int32, (None,), name='target_sequence_length')
            max_target_sequence_length = tf.reduce_max(target_sequence_length_p, name='max_target_len')

            for layer in range(num_layers):
                with tf.variable_scope('decoder_{}'.format(layer)):
                    lstm = tf.contrib.rnn.LSTMCell(rnn_size,
                                                   initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
                    dec_cell = tf.contrib.rnn.DropoutWrapper(lstm,
                                                             input_keep_prob=keep_prob)

            output_layer = Dense(vocab_size,
                                 kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                 name='output_layer')
            # output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size, None, scope=decoding_scope)


            encoder_state = tf.contrib.rnn.LSTMStateTuple(
                tf.placeholder(tf.float32, [None, rnn_size]),
                tf.placeholder(tf.float32, [None, rnn_size]))

            train_decoder_output = decoding_layer_train(encoder_state, dec_cell,
                                        dec_embed_input,
                                        target_sequence_length_p,
                                        max_target_sequence_length,
                                        output_layer,
                                        keep_prob)

            # encoder_state, dec_cell, dec_embed_input, sequence_length,
            #                      decoding_scope, output_fn, keep_prob)


            assert isinstance(train_decoder_output, tf.contrib.seq2seq.BasicDecoderOutput),\
                'Found wrong type: {}'.format(type(train_decoder_output))

            assert train_decoder_output.rnn_output.get_shape().as_list() == [batch_size, None, vocab_size], \
                'Wrong shape returned.  Found {}'.format(train_decoder_output.rnn_output.get_shape())

    _print_success_message()
In [15]:
hide_code
# https://github.com/udacity/deep-learning/blob/master/language-translation/problem_unittests.py
def test_decoding_layer_infer(decoding_layer_infer):
    batch_size = 64
    vocab_size = 1000
    sequence_length = 22
    embedding_size = 200
    rnn_size = 512
    num_layers = 3

    with tf.Graph().as_default():
        with tf.variable_scope("decoding") as decoding_scope:
            dec_embeddings = tf.Variable(tf.random_uniform([vocab_size, embedding_size]))

            dec_embed_input = tf.placeholder(tf.float32, [batch_size, sequence_length, embedding_size])
            keep_prob = tf.placeholder(tf.float32)
            target_sequence_length_p = tf.placeholder(tf.int32, (None,), name='target_sequence_length')
            max_target_sequence_length = tf.reduce_max(target_sequence_length_p, name='max_target_len')

            for layer in range(num_layers):
                with tf.variable_scope('decoder_{}'.format(layer)):
                    lstm = tf.contrib.rnn.LSTMCell(rnn_size,
                                                   initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
                    dec_cell = tf.contrib.rnn.DropoutWrapper(lstm,
                                                             input_keep_prob=keep_prob)

            output_layer = Dense(vocab_size,
                                 kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1),
                                 name='output_layer')
            # output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size, None, scope=decoding_scope)

            encoder_state = tf.contrib.rnn.LSTMStateTuple(
                tf.placeholder(tf.float32, [None, rnn_size]),
                tf.placeholder(tf.float32, [None, rnn_size]))

            infer_logits_output = decoding_layer_infer( encoder_state,
                                                        dec_cell,
                                                        dec_embeddings,
                                                        1,
                                                        2,
                                                        max_target_sequence_length,
                                                        vocab_size,
                                                        output_layer,
                                                        batch_size,
                                                        keep_prob)

            # encoder_state, dec_cell, dec_embeddings, 10, 20,
            #                     sequence_length, vocab_size, decoding_scope, output_fn, keep_prob)


            assert isinstance(infer_logits_output, tf.contrib.seq2seq.BasicDecoderOutput),\
                'Found wrong type: {}'.format(type(infer_logits_output))

            assert infer_logits_output.sample_id.get_shape().as_list() == [batch_size, None], \
                 'Wrong shape returned.  Found {}'.format(infer_logits_output.sample_id.get_shape())

    _print_success_message()

Get the Data

Since translating the whole language of English to French will take lots of time to train, we have provided you with a small portion of the English corpus.

In [16]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

source_path = 'data/small_vocab_en'
target_path = 'data/small_vocab_fr'
source_text = load_data(source_path)
target_text = load_data(target_path)

Explore the Data

Play around with view_sentence_range to view different parts of the data.

In [17]:
hide_code
view_sentence_range = (0, 10)
"""DON'T MODIFY ANYTHING IN THIS CELL"""

print('Dataset Stats')
print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))

sentences = source_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
print('Number of sentences: {}'.format(len(sentences)))
print('Average number of words in a sentence: {}'.format(np.average(word_counts)))

print()
print('English sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
print()
print('French sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
Dataset Stats
Roughly the number of unique words: 227
Number of sentences: 137860
Average number of words in a sentence: 13.225373567387205

English sentences 0 to 10:
new jersey is sometimes quiet during autumn , and it is snowy in april .
the united states is usually chilly during july , and it is usually freezing in november .
california is usually quiet during march , and it is usually hot in june .
the united states is sometimes mild during june , and it is cold in september .
your least liked fruit is the grape , but my least liked is the apple .
his favorite fruit is the orange , but my favorite is the grape .
paris is relaxing during december , but it is usually chilly in july .
new jersey is busy during spring , and it is never hot in march .
our least liked fruit is the lemon , but my least liked is the grape .
the united states is sometimes busy during january , and it is sometimes warm in november .

French sentences 0 to 10:
new jersey est parfois calme pendant l' automne , et il est neigeux en avril .
les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .
california est généralement calme en mars , et il est généralement chaud en juin .
les états-unis est parfois légère en juin , et il fait froid en septembre .
votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .
son fruit préféré est l'orange , mais mon préféré est le raisin .
paris est relaxant en décembre , mais il est généralement froid en juillet .
new jersey est occupé au printemps , et il est jamais chaude en mars .
notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .
les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .

Implement Preprocessing Function

Text to Word Ids

As you did with other RNNs, you must turn the text into a number so the computer can understand it. In the function text_to_ids(), you'll turn source_text and target_text from words to ids. However, you need to add the <EOS> word id at the end of target_text. This will help the neural network predict when the sentence should end.

You can get the <EOS> word id by doing:

target_vocab_to_int['<EOS>']

You can get other word ids using source_vocab_to_int and target_vocab_to_int.

In [18]:
hide_code
def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int):
    """
    Convert source and target text to proper word ids
    :param source_text: String that contains all the source text.
    :param target_text: String that contains all the target text.
    :param source_vocab_to_int: Dictionary to go from the source words to an id
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :return: A tuple of lists (source_id_text, target_id_text)

    """
    # TODO: Implement Function

    source_id_text = [[source_vocab_to_int[word] for word in sentence.split()] \
                      for sentence in source_text.split('\n')]
    target_id_text = [[target_vocab_to_int[word] for word in (sentence + ' <EOS>').split()]\
                      for sentence in target_text.split('\n')]
    
    return source_id_text, target_id_text

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_text_to_ids(text_to_ids)
Tests Passed

Preprocess All the Data and Save It

Running the code cell below will preprocess all the data and save it to file.

In [19]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

preprocess_and_save_data(source_path, target_path, text_to_ids)

Checkpoint 1

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.

In [20]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = load_preprocess()
In [21]:
hide_code
print('Example of source_int_text: \n', source_int_text[0], '\n')
print('Example of target_int_text: \n', target_int_text[0], '\n')
print('Example of source_vocab_to_int: \n', \
      {k:v for k,v in source_vocab_to_int.items() \
       if v in [98, 188, 182, 78, 199, 101, 126, 115, 102, 5, 182, 44, 100, 193, 213]}, '\n')
print('Example of target_vocab_to_int \n', \
      {k:v for k,v in target_vocab_to_int.items() \
       if v in [285, 69, 52, 100, 160, 311, 236, 89, 125, 221, 344, 52, 39, 220, 120, 162, 1]})
Example of source_int_text: 
 [213, 229, 22, 219, 21, 39, 215, 150, 157, 90, 22, 212, 170, 216, 104] 

Example of target_int_text: 
 [92, 263, 203, 168, 349, 266, 348, 155, 74, 230, 93, 203, 8, 312, 154, 218, 1] 

Example of source_vocab_to_int: 
 {'drives': 5, 'banana.': 44, 'mango.': 78, 'least': 98, 'horses': 100, 'orange': 101, 'cats': 102, 'dry': 115, 'white': 126, 'chinese': 182, 'like': 188, 'animal': 193, 'when': 199, 'new': 213} 

Example of target_vocab_to_int 
 {'<EOS>': 1, 'aimait': 39, 'allée': 52, 'durant': 69, 'grosses': 89, 'poires': 100, 'inde': 120, 'moindres': 125, "qu'il": 160, "l'automne": 162, 'chien': 220, 'cher': 221, 'veulent': 236, 'moins': 285, 'vos': 311, "n'aime": 344}

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU

In [22]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer'
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
TensorFlow Version: 1.1.0
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/ipykernel_launcher.py:10: UserWarning: No GPU found. Please use a GPU to train your neural network.
  # Remove the CWD from sys.path while we load stuff.

Build the Neural Network

You'll build the components necessary to build a Sequence-to-Sequence model by implementing the following functions below:

  • model_inputs
  • process_decoder_input
  • encoding_layer
  • decoding_layer_train
  • decoding_layer_infer
  • decoding_layer
  • seq2seq_model

Input

Implement the model_inputs() function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Input text placeholder named "input" using the TF Placeholder name parameter with rank 2.
  • Targets placeholder with rank 2.
  • Learning rate placeholder with rank 0.
  • Keep probability placeholder named "keep_prob" using the TF Placeholder name parameter with rank 0.
  • Target sequence length placeholder named "target_sequence_length" with rank 1
  • Max target sequence length tensor named "max_target_len" getting its value from applying tf.reduce_max on the target_sequence_length placeholder. Rank 0.
  • Source sequence length placeholder named "source_sequence_length" with rank 1

Return the placeholders in the following the tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length)

In [23]:
hide_code
def model_inputs():
    """
    Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences.
    :return: Tuple (input, targets, learning rate, keep probability, target sequence length,
    max target sequence length, source sequence length)
    """
    # TODO: Implement Function
    
    inputs = tf.placeholder(tf.int32, shape=[None,None], name="input") # rank 2
    targets = tf.placeholder(tf.int32, shape=[None, None], name="target") # rank 2
    
    learning_rate = tf.placeholder(tf.float32, shape=[], name="learning_rate") # rank 0
    keep_probability = tf.placeholder(tf.float32, shape=[], name="keep_prob") # rank 0
    
    target_sequence_length = tf.placeholder(tf.int32, shape=[None], name="target_sequence_length") # rank 1 
    max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len') # rank 0
    source_sequence_length = tf.placeholder(tf.int32, shape=[None], name="source_sequence_length") # rank 1
    
    
    return (inputs, targets, learning_rate, keep_probability, 
            target_sequence_length, max_target_sequence_length, source_sequence_length)

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_model_inputs(model_inputs)
Tests Passed

Process Decoder Input

Implement process_decoder_input by removing the last word id from each batch in target_data and concat the GO ID to the begining of each batch.

In [24]:
hide_code
def process_decoder_input(target_data, target_vocab_to_int, batch_size):
    """
    Preprocess target data for encoding
    :param target_data: Target Placehoder
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :param batch_size: Batch Size
    :return: Preprocessed target data
    """
    # TODO: Implement Function
    
    target_endings = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
    decoded_target_data = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), 
                                    target_endings], 1)
    return decoded_target_data

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_process_encoding_input(process_decoder_input)
Tests Passed

Encoding

Implement encoding_layer() to create a Encoder RNN layer:

In [28]:
hide_code
def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, 
                   source_sequence_length, source_vocab_size, 
                   encoding_embedding_size):
    """
    Create encoding layer
    :param rnn_inputs: Inputs for the RNN
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param keep_prob: Dropout keep probability
    :param source_sequence_length: a list of the lengths of each sequence in the batch
    :param source_vocab_size: vocabulary size of source data
    :param encoding_embedding_size: embedding size of source data
    :return: tuple (RNN output, RNN state)
    """
    # TODO: Implement Function

    emb_outputs = tf.contrib.layers.embed_sequence(rnn_inputs, 
                                                   vocab_size=source_vocab_size, 
                                                   embed_dim=encoding_embedding_size)
    
    stacked_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) \
                                                for _ in range(num_layers)])
    
    stacked_cell = tf.contrib.rnn.DropoutWrapper(stacked_cell, 
                                                 input_keep_prob=1.0, 
                                                 output_keep_prob=keep_prob)

    enc_outputs, enc_state = tf.nn.dynamic_rnn(stacked_cell, emb_outputs, dtype=tf.float32)


    return enc_outputs, enc_state

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_encoding_layer(encoding_layer)
Tests Passed

Decoding - Training

Create a training decoding layer:

In [31]:
hide_code
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, 
                         target_sequence_length, max_summary_length, 
                         output_layer, keep_prob):
    """
    Create a decoding layer for training
    :param encoder_state: Encoder State
    :param dec_cell: Decoder RNN Cell
    :param dec_embed_input: Decoder embedded input
    :param target_sequence_length: The lengths of each sequence in the target batch
    :param max_summary_length: The length of the longest sequence in the batch
    :param output_layer: Function to apply the output layer
    :param keep_prob: Dropout keep probability
    :return: BasicDecoderOutput containing training logits and sample_id
    """
    # TODO: Implement Function
    
    dec_trainhelper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input, 
                                                        sequence_length=target_sequence_length)
     
    dec_basic = tf.contrib.seq2seq.BasicDecoder(cell=dec_cell, 
                                                helper=dec_trainhelper, 
                                                initial_state=encoder_state,
                                                output_layer=output_layer)
     
    outputs, _ = tf.contrib.seq2seq.dynamic_decode(decoder=dec_basic,
                                                   output_time_major=False,
                                                   impute_finished=True,
                                                   maximum_iterations=20)
    
    return outputs

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_decoding_layer_train(decoding_layer_train)
Tests Passed

Decoding - Inference

Create inference decoder:

In [ ]:
hide_code
def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id,
                         end_of_sequence_id, max_target_sequence_length,
                         vocab_size, output_layer, batch_size, keep_prob):
    """
    Create a decoding layer for inference
    :param encoder_state: Encoder state
    :param dec_cell: Decoder RNN Cell
    :param dec_embeddings: Decoder embeddings
    :param start_of_sequence_id: GO ID
    :param end_of_sequence_id: EOS Id
    :param max_target_sequence_length: Maximum length of target sequences
    :param vocab_size: Size of decoder/target vocabulary
    :param decoding_scope: TenorFlow Variable Scope for decoding
    :param output_layer: Function to apply the output layer
    :param batch_size: Batch size
    :param keep_prob: Dropout keep probability
    :return: BasicDecoderOutput containing inference logits and sample_id
    """
    # TODO: Implement Function
    
    tf.contrib.seq2seq.GreedyEmbeddingHelper
    
    tf.contrib.seq2seq.BasicDecoder
    
    tf.contrib.seq2seq.dynamic_decode
    
    return None

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_decoding_layer_infer(decoding_layer_infer)

Build the Decoding Layer

Implement decoding_layer() to create a Decoder RNN layer.

  • Embed the target sequences
  • Construct the decoder LSTM cell (just like you constructed the encoder cell above)
  • Create an output layer to map the outputs of the decoder to the elements of our vocabulary
  • Use the your decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob) function to get the training logits.
  • Use your decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob) function to get the inference logits.

Note: You'll need to use tf.variable_scope to share variables between training and inference.

In [ ]:
hide_code
def decoding_layer(dec_input, encoder_state,
                   target_sequence_length, max_target_sequence_length,
                   rnn_size,
                   num_layers, target_vocab_to_int, target_vocab_size,
                   batch_size, keep_prob, decoding_embedding_size):
    """
    Create decoding layer
    :param dec_input: Decoder input
    :param encoder_state: Encoder state
    :param target_sequence_length: The lengths of each sequence in the target batch
    :param max_target_sequence_length: Maximum length of target sequences
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :param target_vocab_size: Size of target vocabulary
    :param batch_size: The size of the batch
    :param keep_prob: Dropout keep probability
    :param decoding_embedding_size: Decoding embedding size
    :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
    """
    # TODO: Implement Function
    return None, None

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_decoding_layer(decoding_layer)

Build the Neural Network

Apply the functions you implemented above to:

  • Encode the input using your encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size).
  • Process target data using your process_decoder_input(target_data, target_vocab_to_int, batch_size) function.
  • Decode the encoded input using your decoding_layer(dec_input, enc_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size) function.
In [ ]:
hide_code
def seq2seq_model(input_data, target_data, keep_prob, batch_size,
                  source_sequence_length, target_sequence_length,
                  max_target_sentence_length,
                  source_vocab_size, target_vocab_size,
                  enc_embedding_size, dec_embedding_size,
                  rnn_size, num_layers, target_vocab_to_int):
    """
    Build the Sequence-to-Sequence part of the neural network
    :param input_data: Input placeholder
    :param target_data: Target placeholder
    :param keep_prob: Dropout keep probability placeholder
    :param batch_size: Batch Size
    :param source_sequence_length: Sequence Lengths of source sequences in the batch
    :param target_sequence_length: Sequence Lengths of target sequences in the batch
    :param source_vocab_size: Source vocabulary size
    :param target_vocab_size: Target vocabulary size
    :param enc_embedding_size: Decoder embedding size
    :param dec_embedding_size: Encoder embedding size
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
    """
    # TODO: Implement Function
    return None, None

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_seq2seq_model(seq2seq_model)

Neural Network Training

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of epochs.
  • Set batch_size to the batch size.
  • Set rnn_size to the size of the RNNs.
  • Set num_layers to the number of layers.
  • Set encoding_embedding_size to the size of the embedding for the encoder.
  • Set decoding_embedding_size to the size of the embedding for the decoder.
  • Set learning_rate to the learning rate.
  • Set keep_probability to the Dropout keep probability
  • Set display_step to state how many steps between each debug output statement
In [ ]:
hide_code
epochs = None
batch_size = None
rnn_size = None
num_layers = None
encoding_embedding_size = None
decoding_embedding_size = None
learning_rate = None
keep_probability = None
display_step = None

Build the Graph

Build the graph using the neural network you implemented.

In [ ]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

save_path = 'checkpoints/dev'
(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = load_preprocess()
max_target_sentence_length = max([len(sentence) for sentence in source_int_text])

train_graph = tf.Graph()
with train_graph.as_default():
    input_data, targets, lr, keep_prob, 
    target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs()

    #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length')
    input_shape = tf.shape(input_data)

    train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]),
                                                   targets,
                                                   keep_prob,
                                                   batch_size,
                                                   source_sequence_length,
                                                   target_sequence_length,
                                                   max_target_sequence_length,
                                                   len(source_vocab_to_int),
                                                   len(target_vocab_to_int),
                                                   encoding_embedding_size,
                                                   decoding_embedding_size,
                                                   rnn_size,
                                                   num_layers,
                                                   target_vocab_to_int)


    training_logits = tf.identity(train_logits.rnn_output, name='logits')
    inference_logits = tf.identity(inference_logits.sample_id, name='predictions')

    masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks')

    with tf.name_scope("optimization"):
        # Loss function
        cost = tf.contrib.seq2seq.sequence_loss(
            training_logits,
            targets,
            masks)

        # Optimizer
        optimizer = tf.train.AdamOptimizer(lr)

        # Gradient Clipping
        gradients = optimizer.compute_gradients(cost)
        capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
        train_op = optimizer.apply_gradients(capped_gradients)

Batch and pad the source and target sequences

In [ ]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

def pad_sentence_batch(sentence_batch, pad_int):
    """Pad sentences with <PAD> so that each sentence of a batch has the same length"""
    max_sentence = max([len(sentence) for sentence in sentence_batch])
    return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch]

def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int):
    """Batch targets, sources, and the lengths of their sentences together"""
    for batch_i in range(0, len(sources)//batch_size):
        start_i = batch_i * batch_size

        # Slice the right amount for the batch
        sources_batch = sources[start_i:start_i + batch_size]
        targets_batch = targets[start_i:start_i + batch_size]

        # Pad
        pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int))
        pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int))

        # Need the lengths for the _lengths parameters
        pad_targets_lengths = []
        for target in pad_targets_batch:
            pad_targets_lengths.append(len(target))

        pad_source_lengths = []
        for source in pad_sources_batch:
            pad_source_lengths.append(len(source))

        yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths

Train

Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the forms to see if anyone is having the same problem.

In [ ]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

def get_accuracy(target, logits):
    """
    Calculate accuracy
    """
    max_seq = max(target.shape[1], logits.shape[1])
    if max_seq - target.shape[1]:
        target = np.pad(
            target,
            [(0,0),(0,max_seq - target.shape[1])],
            'constant')
    if max_seq - logits.shape[1]:
        logits = np.pad(
            logits,
            [(0,0),(0,max_seq - logits.shape[1])],
            'constant')

    return np.mean(np.equal(target, logits))

# Split data to training and validation sets
train_source = source_int_text[batch_size:]
train_target = target_int_text[batch_size:]
valid_source = source_int_text[:batch_size]
valid_target = target_int_text[:batch_size]

(valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = \ 
next(get_batches(valid_source, valid_target, batch_size, 
                 source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>']))

with tf.Session(graph=train_graph) as sess:
    sess.run(tf.global_variables_initializer())

    for epoch_i in range(epochs):
        for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate(
                get_batches(train_source, train_target, batch_size,
                            source_vocab_to_int['<PAD>'],
                            target_vocab_to_int['<PAD>'])):

            _, loss = sess.run(
                [train_op, cost],
                {input_data: source_batch,
                 targets: target_batch,
                 lr: learning_rate,
                 target_sequence_length: targets_lengths,
                 source_sequence_length: sources_lengths,
                 keep_prob: keep_probability})

            if batch_i % display_step == 0 and batch_i > 0:

                batch_train_logits = sess.run(
                    inference_logits,
                    {input_data: source_batch,
                     source_sequence_length: sources_lengths,
                     target_sequence_length: targets_lengths,
                     keep_prob: 1.0})

                batch_valid_logits = sess.run(
                    inference_logits,
                    {input_data: valid_sources_batch,
                     source_sequence_length: valid_sources_lengths,
                     target_sequence_length: valid_targets_lengths,
                     keep_prob: 1.0})

                train_acc = get_accuracy(target_batch, batch_train_logits)

                valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits)

                print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, \
                Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}'\
                      .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss))

    # Save Model
    saver = tf.train.Saver()
    saver.save(sess, save_path)
    print('Model Trained and Saved')

Save Parameters

Save the batch_size and save_path parameters for inference.

In [ ]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

# Save parameters for checkpoint
save_params(save_path)

Checkpoint 2

In [ ]:
hide_code
"""DON'T MODIFY ANYTHING IN THIS CELL"""

_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = load_preprocess()
load_path = load_params()

Sentence to Sequence

To feed a sentence into the model for translation, you first need to preprocess it. Implement the function sentence_to_seq() to preprocess new sentences.

  • Convert the sentence to lowercase
  • Convert words into ids using vocab_to_int
    • Convert words not in the vocabulary, to the <UNK> word id.
In [ ]:
hide_code
def sentence_to_seq(sentence, vocab_to_int):
    """
    Convert a sentence to a sequence of ids
    :param sentence: String
    :param vocab_to_int: Dictionary to go from the words to an id
    :return: List of word ids
    """
    # TODO: Implement Function
    
    return None

"""DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE"""
test_sentence_to_seq(sentence_to_seq)

Translate

This will translate translate_sentence from English to French.

In [ ]:
hide_code
translate_sentence = 'he saw a old yellow truck .'

"""DON'T MODIFY ANYTHING IN THIS CELL"""

translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int)

loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
    # Load saved model
    loader = tf.train.import_meta_graph(load_path + '.meta')
    loader.restore(sess, load_path)

    input_data = loaded_graph.get_tensor_by_name('input:0')
    logits = loaded_graph.get_tensor_by_name('predictions:0')
    target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0')
    source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0')
    keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')

    translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size,
                                         target_sequence_length: [len(translate_sentence)*2]*batch_size,
                                         source_sequence_length: [len(translate_sentence)]*batch_size,
                                         keep_prob: 1.0})[0]

print('Input')
print('  Word Ids:      {}'.format([i for i in translate_sentence]))
print('  English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))

print('\nPrediction')
print('  Word Ids:      {}'.format([i for i in translate_logits]))
print('  French Words: {}'.format(" ".join([target_int_to_vocab[i] for i in translate_logits])))

Imperfect Translation

You might notice that some sentences translate better than others. Since the dataset you're using only has a vocabulary of 227 English words of the thousands that you use, you're only going to see good results using these words. For this project, you don't need a perfect translation. However, if you want to create a better translation model, you'll need better data.

You can train on the WMT10 French-English corpus. This dataset has more vocabulary and richer in topics discussed. However, this will take you days to train, so make sure you've a GPU and the neural network is performing well on dataset we provided. Just make sure you play with the WMT10 corpus after you've submitted this project.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_language_translation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.