

Machine Learning Engineer Nanodegree

Capstone Project

P6: Sberbank Russian Housing Market

Report

I. Definition

 Project Overview

Regression analysis is a form of math predictive modeling which investigates the relationship between
variables. It answers the questions: Which factors matter most? Which can we ignore? How do those factors
interact with each other? And, perhaps most importantly, how certain are we about these factors and their
predictions?

The main factor that we’re trying to understand or predict is a target (a dependent variable). The features
(independent variables) are the factors we suppose to have an impact on the dependent variable. Using this set
of variables, we generate a function that maps inputs to outputs. The training process continues until the
model achieves the desired level of accuracy.

The project investigates supervised learning as a part of regression analysis that uses a known (training)
dataset to make predictions. This dataset includes input data and response values. The supervised learning
algorithms seek to build models which make predictions of the response values for a new dataset. A test
dataset is used to validate the model.

Housing costs are a sphere in the real economy for applying supervised learning. They demand a significant
investment from both consumers and developers. And when it comes to planning a budget—whether personal
or corporate—the last thing anyone needs is uncertainty about one of their budgets expenses. Sberbank,
Russia’s oldest and largest bank, helps their customers by making predictions about reality prices so renters,
developers, and lenders are more confident when they sign a lease or purchase a building.

Although the housing market is relatively stable in Russia, the country’s volatile economy makes forecasting
prices as a function of apartment characteristics a unique challenge. Complex interactions between housing
features such as a number of bedrooms and location are enough to make pricing predictions complicated.
Adding an unstable economy to the mix means Sberbank and their customers need more than simple
regression models in their arsenal.

The project was built on the basis of the competition offered on the site https://www.kaggle.com.

Problem Statement

Sberbank is challenging programmers to develop algorithms which use a broad spectrum of features to predict
real prices. Algorithm applications rely on a rich dataset that includes housing data and macroeconomic
patterns. An accurate forecasting model will allow Sberbank to provide more certainty to their customers in an
uncertain economy.

My choice of the solution in this situation is to select the most correlated indicators with the target variable
and apply ensemble algorithms that have repeatedly shown successful results in the study of price trends in

real estate. Boosting and bagging methods combine several models at once in order to improve the prediction
accuracy on learning problems with a numerical target variable.

Then I am going to explore the different types of neural networks in the sphere of regression predictions and
try to achieve the same with ensemble methods level of model perfomance.

The most valuable side of this project is the investigation of real data and the attempt to approximate the
predictions on them to the threshold of 0.7-0.8 for the coefficient of determination.

 Metrics

The wide spectrum of popular metrics for regression was chosen and documented.

1. Explained variance regression score.

If is the estimated target output, the corresponding (correct) target output, and Var is variance, the
square of the standard deviation, then the explained variance is estimated as follow:

2. Coefficient of determination.

If is the predicted value of the -th sample and is the corresponding true value, then the score R²

estimated over is defined as

 where .

3. Mean squared error.

If is the predicted value of the -th sample, and is the corresponding true value, then the mean squared

error (MSE) estimated over is defined as

4. Mean absolute error.

If is the predicted value of the -th sample, and is the corresponding true value, then the mean absolute

error (MAE) estimated over is defined as

5. Median absolute error.

If is the predicted value of the -th sample and is the corresponding true value, then the median absolute
error (MedAE) estimated over is defined as

Evaluation metrics capture different properties of the prediction performance: how well the model explains
the target variance and makes predictions, how far the predictions are from the real values. It allows us to
choose the best algorithm by comparing many indicators.

II. Analysis

 Data Exploration

The datas the for the investigation is a large number of economic indicators for pricing and prices themselves
(train.csv and test.csv). Macroeconomic variables are collected in a separate file for transaction dates
(macro.csv). In addition, the detailed description of variables is provided (data_dictionary.txt).

Sberbank Russian Housing, Dataset Descriptive Statistics:

Number of houses = 30471
Number of features = 44
Minimum house price = 100000
Maximum house price = 111111112
Mean house price = 7123035.28
Median house price = 6274411.00
Standard deviation of house prices = 4780032.89

For practical reasons, I have not analyzed all the data and have chosen the following independent variables:

1. the dollar rate, which traditionally affects the Russian real estate market;
2. the distance in km from the Kremlin (the closer to the center of the city, the more expensive);
3. indicators characterizing the availability of urban infrastructure nearby (schools, medical and sports

centers, supermarkets, etc.) ;
4. indicators of a particular living space (number of rooms, floor, etc.);
5. proximity to transport nodes (for example, to the metro);
6. indicators of population density and employment in the region of housing accommodation.

All these economic indicators have a strong influence on price formation and can be used as a basic set for
regression analysis. Examples of numerical variables: the distance to the metro, the distance to the school, the
dollar rate at the transaction moment, the area of the living space. Examples of categorical variables:
neighborhoods, the nearest metro station, the number of rooms.

Here data outliers are, in most cases, expensive price categories. They have a strong influence on the market
prices in general, so I did not exclude them from the analysis but applied the necessary method of scaling the
variables RobustScaler().

We should also note that the features are not normally distributed. But the lognormal distribution looks very
similar to their properties.

The goal of the project is to predict the price of housing using the chosen set of numerical and categorical
variables. The predicted target is not discrete, for the training set all the values of this dependent variable are
given, and therefore it is necessary to apply the regression algorithms of supervised learning.

The data preprocessing confirmed the assumption: these variables are in a sufficiently strong relationship with
the target variable. They are used as the basis for building different types of models in several forms: only
numerical variables, numeric and categorical variables transformed into numeric or binary code.

 Exploratory Visualization

To realize the project it was necessary to use a lot of visualization tools at all stages: data tables, distributions
of quantities, correlation maps, the graphical comparison of predictions and real values, representation of the
feature importance for specific algorithms, operation processes and architecture of neural networks, etc.

For example: the loss function (pic.1) displays the effectiveness of neural network training, the correlation
matrix (pic.2) shows the relationship between many variables, feature importance (pic.3) explains the
influence of each variable on the concrete regression model.

Pic.1 Loss Function

On the picture, we see two curves of decreasing training and testing loss functions. Decreasing is uneven,
irregular. The graph shows that the model can be improved by smoothing out these jumps. For this goal, we
can add some layers (fully-connected or others).

Pic. 2 Correlation Matrix

The correlation matrix shows very strong feature dependences one from another (darkest colors - the positive
correlation, lightest colors - the negative). It means serious difficulties in improving the predictions based on
this database. However, for such data sets, we have the ability to reduce the dimensionality.

Pic. 3 Feature Importance

On the picture, we can see the importance of variables and very large differences in their effect on the specific
type of regressors. Thus combining regressors with considering of this influence is an additional possibility
for improving models.

 Algorithms and Techniques

To compare the prediction quality, I chose this set of tools.

1. ScikitLearn ensemble and neural network algorithms: Gradient Boosting Regressor, Bagging
Regressor, MLP Regressor.

2. Keras: Dense, Flatten, Dropout, Convolutional, Max-Polling, LSTM layers and additional tools.
3. Numpy, Pandas, ScikitLearn: tools for data preprocessing.
4. Matplotlib, Seaborn: plots for data visualization.

In addition, I was wondering what the highest perfomance rate will be achieved by each of the presented
algorithms and whether the predicted trends of price change for all used types of techniques will coincide.

The first group of algorithms was chosen from ensemble methods. It combines the predictions of several base
estimators built with a given learning algorithm (Decision Tree) in order to improve generalizability and
robustness over a single estimator. They work very well with financial data because of these characteristics.

The Bagging Regressor is an averaging ensemble method. It builds several estimators independently on
random subsets of the original training set and then averages their predictions. As a result, the combined
estimator is usually better than any single one because its variance is reduced.

The Gradient Boosting Regressor is a boosting ensemble method. It combines base estimators sequentially
and one tries to reduce the bias of the final estimator (a powerful ensemble). The mechanism of the model
consists of three important components: the loss function for checking how well our model predicts the
outputs based on input values, the Decision Tree algorithms for making predictions, the additive mechanism
for algorithms for minimizing the loss function. At each particular Gradient Boosting iteration, a new
algorithm is trained with respect to the error that was learned so far. This procedure has the following steps: 1)
add one algorithm that can reduce the loss function based on the current estimates (existing algorithms in the
model are not changed); 2) use an effective procedure called gradient descent to minimize the loss; 3) repeat
till the fixed number of algorithms are added or the loss reaches an acceptable level or the loss no longer
improves on an external validation dataset. The result of the model training should be that predictions slowly
converge toward observed values.

Neural networks such as multi-layer perceptrons (MLP), convolutional neural networks (CNN), recurrent
neural networks (RNN) are built from layers:

- Dense (fully connected) layers compute the output scores, resulting in volume of size. Each neuron in these
layers are connected to all the numbers in the previous volume.
- Activation applies the certain activation function to an output.
- Dropout layers consist in randomly setting a fraction rate of input units to 0 at each update during training
time, which helps prevent overfitting.
- Flatten layers flatten the input and collapses it into the one-dimensional feature vector.
- Convolutional layers Conv1D (temporal convolution) convolve the filter with the signal, i.e. “is sliding over
the signal vector, computing dot products”. Here the filter is an integer, the dimensionality of the output space
(i.e. the number output of filters in the convolution) and the kernel size is an integer, specifying the length of
the 1D convolution window.
- Max-Polling layers MaxPolling1D layers perform a downsampling operation along the temporal data. Max-
pooling partitions the input signal into a set of non-overlapping samples and, for each such subsample, outputs
the maximum value.
- Recurrent Layers LSTM (Long-Short Term Memory) are a type of artificial neural network designed to
recognize patterns in sequences of data, such as numerical times series. Recurrent Layers possess a certain
type of memory. For example, LSTMs contain information outside the normal flow of the recurrent network
in a gated cell. Information can be stored in, written to, or read from a cell, much like data in a computer’s
memory. The cell makes decisions about what to store, and when to allow reads, writes and erasures, via gates
that open and close. Unlike the digital storage on computers, however, these gates are analog, implemented
with element-wise multiplication by sigmoids, which are all in the range of 0-1. Analog has the advantage
over digital of being differentiable, and therefore suitable for backpropagation.

Benchmark

The benchmark regressor among investigated models is the Gradient Boosting algorithm, it has the best level
of all the evaluation metrics. We should notice that the Bagging algorithm results are really close to Gradient
Boosting.

The regressor final parameters:

GradientBoostingRegressor(max_depth=4, n_estimators=360)

{'alpha': 0.9,
 'criterion': 'friedman_mse',
 'init': None,
 'learning_rate': 0.1,
 'loss': 'ls',
 'max_depth': 4,
 'max_features': None,
 'max_leaf_nodes': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n_estimators': 360,
 'presort': 'auto',
 'random_state': None,
 'subsample': 1.0,
 'verbose': 0,
 'warm_start': False}

The Convolutional Neural Networks (CNN model) for 36 numeric features demonstrates the best predictions
among neural networks.

Here we can see the final CNN architecture and training process:

Create the sequential model
def cnn_model():
 model = Sequential()

 model.add(Conv1D(36, 3, padding='valid', activation='relu', input_shape=(36, 1)))
 model.add(MaxPooling1D(pool_size=2))

 model.add(Flatten())

 model.add(Dense(512, activation='relu', kernel_initializer='normal',))
 model.add(Dropout(0.5))

 model.add(Dense(1, kernel_initializer='normal'))

 model.compile(loss='mse', optimizer='rmsprop', metrics=['mae'])
 return model

cnn_model = cnn_model()
Create the checkpointer for saving the best results
cnn_checkpointer = ModelCheckpoint(filepath='weights.best.cnn.hdf5',
 verbose=2, save_best_only=True)
Fit the model
cnn_history = cnn_model.fit(X_train.reshape(-1, 36, 1), y_train,
 epochs=30, batch_size=128, verbose=0, callbacks=[cnn_checkpointer],
 validation_data=(X_test.reshape(-1, 36, 1), y_test))

III. Methodology

 Data Preprocessing

Data processing consisted of the following important steps:

1. deleting rows with a lot of missing data;
2. filling a small amount of missing data by linear interpolation;
3. the addition of a macroeconomic indicator;
4. transforming categorical variables into discrete numerical and binary encoded features;
5. checking the coding and eliminating the differences between the category variables in the training and

test sets.

 Implementation

In this project, I have used the following versions of software libraries: Scikit-Learn - 0.19.0, Keras - 2.0.4,
Numpy - 1.13.1, Pandas – 0.20.2, Matplotlib – 2.0.2, Seaborn – 0.7.1.

Two ensemble Scikit-Learn algorithms (Gradient Boosting and Bagging), Scikit-Learn Multi-Layer
Perceptron Regressor, three types of Neural Networks (Keras) were applied to three sets of the features
(numeric, numeric and categorical, numeric and encoded categorical).

For fitting and scoring regressors I have built the simple functions. For example:

def regression(regressor, x_train, x_test, y_train):
 reg = regressor
 reg.fit(x_train, y_train)

 y_train_reg = reg.predict(x_train)
 y_test_reg = reg.predict(x_test)

 return y_train_reg, y_test_reg

The architecture of each network is implemented as a function consisting of a sequence of layers and
compilation. Then the model is fitting with saving the best parameters and making predictions. For example:

def mlp_model():
 model = Sequential()

 model.add(Dense(1024, activation='relu', input_dim=36))
 model.add(Dense(128, activation='relu'))
 model.add(Dense(1, kernel_initializer='normal'))

 model.compile(loss='mse', optimizer='nadam', metrics=['mae'])

 return model

Such a wide range of algorithms allowed to determine the approximate level of the achievable coefficient of
determination of test predictions for this dataset: 69-72%. Identifying the most effective algorithms in the
sphere of real financial indicators is also an important task for machine learning in general.

A detailed technical report on the algorithm parameters and the architecture of each particular model is
presented in the Jupyter notebook format.

 Refinement

The table with the tuning parameters for the test dataset:

Algorithms Initial Parameters Final Parameters R2 MSE
Initial Final Initial Final

Numeric Features
Gradient Boosting
Regressor

default max_depth= 4,
n_estimators=360 0.7082 0.7207 0.5837 0.5587

Bagging
Regressor

default n_estimators= 360 0.7071 0.7203 0.5859 0.5594

MLP Regressor default hidden_layer_sizes=(360,),
max_iter=300, solver='adam',

alpha=0.01
0.6808 0.6969 0.6386 0.6063

MLP Dense(32),
optimizer='rmsprop'

Dense(1024)=>Dense(128),
optimizer='nadam' 0.6536 0.6984 0.6930 0.6034

CNN Dense(64) Dense(512)=>Dropout(0.5) 0.6985 0.7113 0.6030 0.5775
RNN LSTM(36) 3*LSTM(144) 0.6808 0.6938 0.6385 0.6125

Numeric and Categotical Features
Gradient Boosting
Regressor

default max_depth=3,
n_estimators=396 0.7079 0.7152 0.5844 0.5697

Bagging
Regressor

default n_estimators= 308 0.6863 0.7205 0.6275 0.5590

MLP Regressor default hidden_layer_sizes=(396,),
max_iter=300, solver='adam',

alpha=0.01
0.6790 0.6938 0.6421 0.6126

MLP Dense(64),
optimizer='rmsprop'

Dense(1024)=>Dense(64),
optimizer='nadam' 0.6718 0.6987 0.6565 0.6028

CNN Dense(64) Dense(256)=>Dropout(0.5) 0.6889 0.7058 0.6223 0.5885
RNN LSTM(44) LSTM(156), LSTM(624) 0.6862 0.6941 0.6277 0.6120

Numeric and Encoded Categorical Features
Gradient Boosting
Regressor

default max_depth=4,
n_estimators=318 0.7047 0.7080 0.5907 0.5841

Bagging
Regressor

default n_estimators= 159 0.6897 0.7177 0.6208 0.5647

MLP Regressor default hidden_layer_sizes=(318,),
max_iter=150, solver='lbfgs',

alpha=0.01
0.6327 0.6956 0.7348 0.6088

MLP Dense(1024) 2*Dense(159)=>Dropout(0.1)
=>2*Dense(318)=>Dropout(0.1)

=>2*Dense(636)
0.6686 0.6913 0.6630 0.6174

CNN Dense(128) Dense(512)=>Dropout(0.5) 0.6894 0.7033 0.6212 0.5935
RNN LSTM(636) LSTM(159), LSTM(636) 0.6529 0.7093 0.6943 0.5816

Improvements in performance were achieved by optimizing the parameters of the algorithms or developing
the structure of the neural networks. As a result, in many models, the indicator "coefficient of determination"
has changed from the beginning level 0.63-0.70 to the final level 0.69-0.72 on the test data.

Hyperparameter tuning for Gradient Boosting and Bagging Regressors are pretty simple by applying the
GridSearchCV() function.

For neural networks, I experimented hundreds of times and found the combination of layers and there
parameters which produce about the same results with ensemble algoritms.

Here it is the most successfull model architectura for this dataset among all experiments:

Layer (type) Output Shape Param #
===
conv1d_7 (Conv1D) (None, 34, 36) 144

max_pooling1d_7 (MaxPooling1 (None, 17, 36) 0

flatten_7 (Flatten) (None, 612) 0

dense_162 (Dense) (None, 512) 313856

dropout_20 (Dropout) (None, 512) 0

dense_163 (Dense) (None, 1) 513
===
Total params: 314,513
Trainable params: 314,513

Non-trainable params: 0

IV. Results

 Model Evaluation and Validation

All the measurements listed in the section "Metrics" were used to evaluate the perfomance of models.

The best indicators for ensemble algorithms.

<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>
Numeric Features; Gradient Boosting Regressor
<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>
EV score. Train: 0.86189746402
EV score. Test: 0.720854054972

R2 score. Train: 0.86189746402

R2 score. Test: 0.720764275765

MSE score. Train: 0.251150449123
MSE score. Test: 0.558723845618

MAE score. Train: 0.31458911313
MAE score. Test: 0.400128339345

MdAE score. Train: 0.174402117839
MdAE score. Test: 0.199730980341

The best indicators for neural networks.

<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>
Numeric Features; CNN Model
<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>
EV score. Train: 0.735439071809
EV score. Test: 0.711557145756

R2 score. Train: 0.735350946162
R2 score. Test: 0.711347161402

MSE score. Train: 0.481285359893
MSE score. Test: 0.577566586338

MAE score. Train: 0.400953623408
MAE score. Test: 0.427550065202

MdAE score. Train: 0.214423935148
MdAE score. Test: 0.22883767204

In the analysis, I did not exclude outliers in general, so the special sensitivity of models to the addition of
other data (including noises or outliers) should not be expected. It can be confirmed by applying the
algorithms for the whole dataset. As it can be seen this experiment has very similar results with the smaller
training set.

<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>
 Gradient Boosting Regressor
<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>
EV score: 0.851729559483

R2 score: 0.851729559483

MSE score: 0.273663122104

MAE score: 0.324355312761

MdAE score: 0.17539487972

The correlation coefficient between predictions and real values within 0.69-0.72 in the test case is high
enough for a real data set (more than 0.6). During work over the project, I had the impression that the
coefficient cannot be improved above 0.75 in the test case for this particular data using any algorithms.

 Justification

Participation of the project in the competition allowed to improve the constructed models, compare indicators
and algorithms with other competitors, discuss the process and evaluate the results. The competition metric
was the RMSLE (Root Mean Squared Logarithmic Error). I did not use it in my work but my models
demonstrated enough well results by this evaluation method also. It confirmed the effectiveness of algorithms
again.

The winner had the RMSLE = 0.30087, I had the RMSLE = 0.32766.

The indicators of two best algorithms in this project are not too far from the indicators of the competition
winner and serve me as a guide to improve the parameters of other designed models. As a result, a whole set
of models yields very similar final predictions and values of metrics.

V. Conclusion

 Free-Form Visualization

As a final visualization, I chose the image of the predictions of all models on a single graph. As it can be seen
from the illustrations, the predictions are very close to each other and determine the overall price dynamics
quite clearly. This is an additional confirmation of the reliability of predictions: in case of erroneous
conclusions, all models would hardly have demonstrated the same trend.

Pic. 4. Display all predictions

 Reflection

The prediction of financial values is quite complex due to the strong dependence of the indicators on each
other, the influence of the time factor and uncertainty. To achieve a greater approximation to real data is one
of the closest and achievable tasks of machine learning.

The project database is similar to the well-known and well-studied the Boston Housing Dataset. Therefore, it
was easy to start implementing the project by applying similar methods. In the course of working on the
project, I experienced much more regression algorithms and neural networks than presented in the program
part, then just shortened the list, leaving the most effective. Working on the data also did not present any
particular difficulties: firstly I cleaned and reduced the base, then tried to use only the numerical variables,
and finally added categorical ones and compared the results.

The most interesting aspect for me was to work with the project precisely because of the large range of
variables in real data and the possibility to advance the understanding this field of activity.

In general, the project implementation process included the following steps: data processing and choice of
variables, application of ensemble methods, improvement of their parameters, construction of neural networks
and their development, model evaluation by metrics and a unified representation of all predictions.

 Improvement

There are many possible ways to improve the modeling: studying of other sets of variables (maybe some
variables with important information were lost), combining of existing algorithms in ensembles (to catch the
trend more effective), developing the architecture of built neural networks in the project (improving structures
allow to analyze more deeply), applying the existing neural networks with a complex structure from the
external sources (for the same reason), etc.

VI. Bibliography

1. Amy Gallo. A Refresher on Regression Analysis. Harvard Business Review, 2015.
2. Model evaluation: quantifying the quality of predictions (http://scikit-

learn.org/stable/modules/model_evaluation.html)
3. Keras: The Python Deep Learning library (https://keras.io/).

