
 

 

Machine Learning Engineer Nanodegree 

Capstone Project 

P6: Sberbank Russian Housing Market 

Report 

I. Definition 

    Project Overview 

Regression analysis is a form of math predictive modeling which investigates the relationship between 
variables. It answers the questions: Which factors matter most? Which can we ignore? How do those factors 
interact with each other? And, perhaps most importantly, how certain are we about these factors and their 
predictions? 

The main factor that we’re trying to understand or predict is a target (a dependent variable). The features 
(independent variables) are the factors we suppose to have an impact on the dependent variable. Using this set 
of variables, we generate a function that maps inputs to outputs. The training process continues until the 
model achieves the desired level of accuracy. 

The project investigates supervised learning as a part of regression analysis that uses a known (training) 
dataset to make predictions. This dataset includes input data and response values. The supervised learning 
algorithms seek to build models which make predictions of the response values for a new dataset. A test 
dataset is used to validate the model.  

Housing costs are a sphere in the real economy for applying supervised learning. They demand a significant 
investment from both consumers and developers. And when it comes to planning a budget—whether personal 
or corporate—the last thing anyone needs is uncertainty about one of their budgets expenses. Sberbank, 
Russia’s oldest and largest bank, helps their customers by making predictions about reality prices so renters, 
developers, and lenders are more confident when they sign a lease or purchase a building. 

Although the housing market is relatively stable in Russia, the country’s volatile economy makes forecasting 
prices as a function of apartment characteristics a unique challenge. Complex interactions between housing 
features such as a number of bedrooms and location are enough to make pricing predictions complicated. 
Adding an unstable economy to the mix means Sberbank and their customers need more than simple 
regression models in their arsenal.    

The project was built on the basis of the competition offered on the site https://www.kaggle.com. 

Problem Statement 

Sberbank is challenging programmers to develop algorithms which use a broad spectrum of features to predict 
real prices. Algorithm applications rely on a rich dataset that includes housing data and macroeconomic 
patterns. An accurate forecasting model will allow Sberbank to provide more certainty to their customers in an 
uncertain economy. 

My choice of the solution in this situation is to select the most correlated indicators with the target variable 
and apply ensemble algorithms that have repeatedly shown successful results in the study of price trends in 



 

 

real estate. Boosting and bagging methods combine several models at once in order to improve the prediction 
accuracy on learning problems with a numerical target variable. 

Then I am going to explore the different types of neural networks in the sphere of regression predictions and 
try to achieve the same with ensemble methods level of model perfomance. 

The most valuable side of this project is the investigation of real data and the attempt to approximate the 
predictions on them to the threshold of 0.7-0.8 for the coefficient of determination. 

    Metrics 

The wide spectrum of popular metrics for regression was chosen and documented. 

1. Explained variance regression score. 

If  is the estimated target output,  the corresponding (correct) target output, and Var  is variance, the 
square of the standard deviation, then the explained variance is estimated as follow: 

 

2. Coefficient of determination. 

If  is the predicted value of the -th sample and  is the corresponding true value, then the score R² 

estimated over  is defined as 

  where      . 

3. Mean squared error. 

If  is the predicted value of the -th sample, and  is the corresponding true value, then the mean squared 

error (MSE) estimated over  is defined as      

4. Mean absolute error. 

If  is the predicted value of the -th sample, and  is the corresponding true value, then the mean absolute 

error (MAE) estimated over  is defined as     

5. Median absolute error. 

If  is the predicted value of the -th sample and  is the corresponding true value, then the median absolute 
error (MedAE) estimated over  is defined as    

Evaluation metrics capture different properties of the prediction performance: how well the model explains 
the target variance and makes predictions, how far the predictions are from the real values. It allows us to 
choose the best algorithm by comparing many indicators.  



 

 

II. Analysis 

    Data Exploration 

The datas the  for the investigation is a large number of economic indicators for pricing and prices themselves 
(train.csv and test.csv). Macroeconomic variables are collected in a separate file for transaction dates 
(macro.csv). In addition, the detailed description of variables is provided (data_dictionary.txt). 
 
Sberbank Russian Housing, Dataset Descriptive Statistics:  
 
Number of houses =  30471 
Number of features =  44 
Minimum house price =  100000 
Maximum house price =  111111112 
Mean house price =  7123035.28 
Median house price =  6274411.00 
Standard deviation of house prices = 4780032.89 

For practical reasons, I have not analyzed all the data and have chosen the following independent variables:  

1. the dollar rate, which traditionally affects the Russian real estate market; 
2. the distance in km from the Kremlin (the closer to the center of the city, the more expensive);  
3. indicators characterizing the availability of urban infrastructure nearby (schools, medical and sports 

centers, supermarkets, etc.) ; 
4. indicators of a particular living space (number of rooms, floor, etc.); 
5. proximity to transport nodes (for example, to the metro); 
6. indicators of population density and employment in the region of housing accommodation. 

All these economic indicators have a strong influence on price formation and can be used as a basic set for 
regression analysis. Examples of numerical variables: the distance to the metro, the distance to the school, the 
dollar rate at the transaction moment, the area of the living space. Examples of categorical variables: 
neighborhoods, the nearest metro station, the number of rooms. 

Here data outliers are, in most cases, expensive price categories. They have a strong influence on the market 
prices in general, so I did not exclude them from the analysis but applied the necessary method of scaling the 
variables RobustScaler().  

We should also note that the features are not normally distributed. But the lognormal distribution looks very 
similar to their properties.  

The goal of the project is to predict the price of housing using the chosen set of numerical and categorical 
variables. The predicted target is not discrete, for the training set all the values of this dependent variable are 
given, and therefore it is necessary to apply the regression algorithms of supervised learning. 

The data preprocessing confirmed the assumption: these variables are in a sufficiently strong relationship with 
the target variable. They are used as the basis for building different types of models in several forms: only 
numerical variables, numeric and categorical variables transformed into numeric or binary code. 

    Exploratory Visualization 

To realize the project it was necessary to use a lot of visualization tools at all stages: data tables, distributions 
of quantities, correlation maps, the graphical comparison of predictions and real values, representation of the 
feature importance for specific algorithms, operation processes and architecture of neural networks, etc. 

For example: the loss function (pic.1) displays the effectiveness of neural network training, the correlation 
matrix (pic.2) shows the relationship between many variables, feature importance (pic.3) explains the 
influence of each variable on the concrete regression model. 



 

 

    

Pic.1 Loss Function   

On the picture, we see two curves of decreasing training and testing loss functions. Decreasing is uneven, 
irregular. The graph shows that the model can be improved by smoothing out these jumps. For this goal, we 
can add some layers (fully-connected or others). 

                            

     

Pic. 2 Correlation Matrix    

The correlation matrix shows very strong feature dependences one from another (darkest colors - the positive 
correlation, lightest colors - the negative). It means serious difficulties in improving the predictions based on 
this database. However, for such data sets, we have the ability to reduce the dimensionality.    



 

 

   

Pic. 3 Feature Importance 

On the picture, we can see the importance of variables and very large differences in their effect on the specific 
type of regressors. Thus combining regressors with considering of this influence is an additional possibility 
for improving models. 

   Algorithms and Techniques 

To compare the prediction quality, I chose this set of tools.  

1. ScikitLearn ensemble and neural network algorithms: Gradient Boosting Regressor, Bagging 
Regressor, MLP Regressor. 

2. Keras: Dense, Flatten, Dropout, Convolutional, Max-Polling, LSTM layers and additional tools. 
3. Numpy, Pandas, ScikitLearn: tools for data preprocessing. 
4. Matplotlib, Seaborn: plots for data visualization. 

In addition, I was wondering what the highest perfomance rate will be achieved by each of the presented 
algorithms and whether the predicted trends of price change for all used types of techniques will coincide. 

The first group of algorithms was chosen from ensemble methods. It combines the predictions of several base 
estimators built with a given learning algorithm (Decision Tree) in order to improve generalizability and 
robustness over a single estimator. They work very well with financial data because of these characteristics. 

The Bagging Regressor is an averaging ensemble method. It builds several estimators independently on 
random subsets of the original training set and then averages their predictions. As a result, the combined 
estimator is usually better than any single one because its variance is reduced. 

The Gradient Boosting Regressor is a boosting ensemble method. It combines base estimators sequentially 
and one tries to reduce the bias of the final estimator (a powerful ensemble). The mechanism of the model 
consists of three important components: the loss function for checking how well our model predicts the 
outputs based on input values, the Decision Tree algorithms for making predictions, the additive mechanism 
for algorithms for minimizing the loss function. At each particular Gradient Boosting iteration, a new 
algorithm is trained with respect to the error that was learned so far. This procedure has the following steps: 1) 
add one algorithm that can reduce the loss function based on the current estimates (existing algorithms in the 
model are not changed); 2) use an effective procedure called gradient descent to minimize the loss; 3) repeat 
till the fixed number of algorithms are added or the loss reaches an acceptable level or the loss no longer 
improves on an external validation dataset. The result of the model training should be that predictions slowly 
converge toward observed values. 

Neural networks such as multi-layer perceptrons (MLP), convolutional neural networks (CNN), recurrent 
neural networks (RNN) are built from layers: 



 

 

- Dense (fully connected) layers compute the output scores, resulting in volume of size. Each neuron in these 
layers are connected to all the numbers in the previous volume. 
- Activation applies the certain activation function to an output. 
- Dropout layers consist in randomly setting a fraction rate of input units to 0 at each update during training 
time, which helps prevent overfitting.  
- Flatten layers flatten the input and collapses it into the one-dimensional feature vector.  
- Convolutional layers Conv1D (temporal convolution) convolve the filter with the signal, i.e. “is sliding over 
the signal vector, computing dot products”. Here the filter is an integer, the dimensionality of the output space 
(i.e. the number output of filters in the convolution) and the kernel size is an integer, specifying the length of 
the 1D convolution window. 
-  Max-Polling layers MaxPolling1D layers perform a downsampling operation along the temporal data. Max-
pooling partitions the input signal into a set of non-overlapping samples and, for each such subsample, outputs 
the maximum value. 
- Recurrent Layers LSTM (Long-Short Term Memory) are a type of artificial neural network designed to 
recognize patterns in sequences of data, such as numerical times series. Recurrent Layers possess a certain 
type of memory. For example, LSTMs contain information outside the normal flow of the recurrent network 
in a gated cell. Information can be stored in, written to, or read from a cell, much like data in a computer’s 
memory. The cell makes decisions about what to store, and when to allow reads, writes and erasures, via gates 
that open and close. Unlike the digital storage on computers, however, these gates are analog, implemented 
with element-wise multiplication by sigmoids, which are all in the range of 0-1. Analog has the advantage 
over digital of being differentiable, and therefore suitable for backpropagation. 

Benchmark 

The benchmark regressor among investigated models is the Gradient Boosting algorithm, it has the best level 
of all the evaluation metrics. We should notice that the Bagging algorithm results are really close to Gradient 
Boosting.  

The regressor final parameters: 

 
GradientBoostingRegressor(max_depth=4, n_estimators=360) 
 
{'alpha': 0.9, 
 'criterion': 'friedman_mse', 
 'init': None, 
 'learning_rate': 0.1, 
 'loss': 'ls', 
 'max_depth': 4, 
 'max_features': None, 
 'max_leaf_nodes': None, 
 'min_impurity_decrease': 0.0, 
 'min_impurity_split': None, 
 'min_samples_leaf': 1, 
 'min_samples_split': 2, 
 'min_weight_fraction_leaf': 0.0, 
 'n_estimators': 360, 
 'presort': 'auto', 
 'random_state': None, 
 'subsample': 1.0, 
 'verbose': 0, 
 'warm_start': False} 

The Convolutional Neural Networks (CNN model) for 36 numeric features demonstrates the best predictions 
among neural networks. 

Here we can see the final CNN architecture and training process: 

# Create the sequential model 
def cnn_model(): 
    model = Sequential() 
         
    model.add(Conv1D(36, 3, padding='valid', activation='relu', input_shape=(36, 1))) 
    model.add(MaxPooling1D(pool_size=2)) 
     
    model.add(Flatten()) 



 

 

     
    model.add(Dense(512, activation='relu', kernel_initializer='normal',)) 
    model.add(Dropout(0.5)) 
     
    model.add(Dense(1, kernel_initializer='normal')) 
     
    model.compile(loss='mse', optimizer='rmsprop', metrics=['mae']) 
    return model 
 
cnn_model = cnn_model() 
# Create the checkpointer for saving the best results 
cnn_checkpointer = ModelCheckpoint(filepath='weights.best.cnn.hdf5',  
                                   verbose=2, save_best_only=True) 
# Fit the model 
cnn_history = cnn_model.fit(X_train.reshape(-1, 36, 1), y_train,  
                            epochs=30, batch_size=128, verbose=0, callbacks=[cnn_checkpointer], 
                            validation_data=(X_test.reshape(-1, 36, 1), y_test)) 
 
 

 

III. Methodology 

    Data Preprocessing 

Data processing consisted of the following important steps: 

1. deleting rows with a lot of missing data; 
2. filling a small amount of missing data by linear interpolation; 
3. the addition of a macroeconomic indicator; 
4. transforming categorical variables into discrete numerical and binary encoded features; 
5. checking the coding and eliminating the differences between the category variables in the training and 

test sets. 

    Implementation 

In this project, I have used the following versions of software libraries: Scikit-Learn - 0.19.0, Keras - 2.0.4, 
Numpy -  1.13.1, Pandas – 0.20.2, Matplotlib – 2.0.2, Seaborn – 0.7.1. 



 

 

Two ensemble Scikit-Learn algorithms (Gradient Boosting and Bagging), Scikit-Learn Multi-Layer 
Perceptron Regressor, three types of Neural Networks (Keras) were applied to three sets of the features 
(numeric, numeric and categorical, numeric and encoded categorical). 

For  fitting and scoring regressors I have built the simple functions. For example: 

def regression(regressor, x_train, x_test, y_train): 
    reg = regressor 
    reg.fit(x_train, y_train) 
     
    y_train_reg = reg.predict(x_train) 
    y_test_reg = reg.predict(x_test) 
     
    return y_train_reg, y_test_reg   

The architecture of each network is implemented as a function consisting of a sequence of layers and 
compilation. Then the model is fitting with saving the best parameters and making predictions. For example: 

def mlp_model(): 
    model = Sequential() 
 
    model.add(Dense(1024, activation='relu', input_dim=36)) 
    model.add(Dense(128, activation='relu')) 
    model.add(Dense(1, kernel_initializer='normal')) 
   
    model.compile(loss='mse', optimizer='nadam', metrics=['mae']) 
 
    return model 

Such a wide range of algorithms allowed to determine the approximate level of the achievable coefficient of 
determination of test predictions for this dataset: 69-72%. Identifying the most effective algorithms in the 
sphere of real financial indicators is also an important task for machine learning in general. 

A detailed technical report on the algorithm parameters and the architecture of each particular model is 
presented in the Jupyter notebook format. 

    Refinement 

The table with the tuning parameters for the test dataset: 

Algorithms Initial Parameters Final Parameters R2 MSE 
Initial Final Initial Final 

Numeric Features 
Gradient Boosting 
Regressor 

default max_depth= 4, 
n_estimators=360 0.7082 0.7207 0.5837 0.5587 

Bagging 
Regressor 

default n_estimators= 360 0.7071 0.7203 0.5859 0.5594 

MLP Regressor default hidden_layer_sizes=(360,), 
max_iter=300, solver='adam', 

alpha=0.01 
0.6808 0.6969 0.6386 0.6063 

MLP Dense(32), 
optimizer='rmsprop' 

Dense(1024)=>Dense(128), 
optimizer='nadam' 0.6536 0.6984 0.6930 0.6034 

CNN Dense(64) Dense(512)=>Dropout(0.5) 0.6985 0.7113 0.6030 0.5775 
RNN LSTM(36) 3*LSTM(144) 0.6808 0.6938 0.6385 0.6125 

Numeric and Categotical Features 
Gradient Boosting 
Regressor 

default max_depth=3, 
n_estimators=396 0.7079 0.7152 0.5844 0.5697 

Bagging 
Regressor 

default n_estimators= 308 0.6863 0.7205 0.6275 0.5590 

MLP Regressor default hidden_layer_sizes=(396,), 
max_iter=300, solver='adam', 

alpha=0.01 
0.6790 0.6938 0.6421 0.6126 



 

 

MLP Dense(64), 
optimizer='rmsprop' 

Dense(1024)=>Dense(64), 
optimizer='nadam' 0.6718 0.6987 0.6565 0.6028 

CNN Dense(64) Dense(256)=>Dropout(0.5) 0.6889 0.7058 0.6223 0.5885 
RNN LSTM(44) LSTM(156), LSTM(624) 0.6862 0.6941 0.6277 0.6120 

Numeric and Encoded Categorical Features 
Gradient Boosting 
Regressor 

default max_depth=4, 
n_estimators=318 0.7047 0.7080 0.5907 0.5841 

Bagging 
Regressor 

default n_estimators= 159 0.6897 0.7177 0.6208 0.5647 

MLP Regressor default hidden_layer_sizes=(318,), 
max_iter=150, solver='lbfgs', 

alpha=0.01 
0.6327 0.6956 0.7348 0.6088 

MLP Dense(1024) 2*Dense(159)=>Dropout(0.1) 
=>2*Dense(318)=>Dropout(0.1) 

=>2*Dense(636) 
0.6686 0.6913 0.6630 0.6174 

CNN Dense(128) Dense(512)=>Dropout(0.5) 0.6894 0.7033 0.6212 0.5935 
RNN LSTM(636) LSTM(159), LSTM(636) 0.6529 0.7093 0.6943 0.5816 

Improvements in performance were achieved by optimizing the parameters of the algorithms or developing 
the structure of the neural networks. As a result, in many models, the indicator "coefficient of determination" 
has changed from the beginning level 0.63-0.70 to the final level 0.69-0.72 on the test data. 

Hyperparameter tuning for Gradient Boosting and Bagging Regressors are pretty simple by applying the 
GridSearchCV() function.  

For neural networks, I experimented hundreds of times and found the combination of layers and there 
parameters which produce about the same results with ensemble algoritms. 

Here it is the most successfull model architectura for this dataset among all experiments: 

Layer (type)                 Output Shape              Param #    
================================================================= 
conv1d_7 (Conv1D)            (None, 34, 36)            144        
_________________________________________________________________ 
max_pooling1d_7 (MaxPooling1 (None, 17, 36)            0          
_________________________________________________________________ 
flatten_7 (Flatten)          (None, 612)               0          
_________________________________________________________________ 
dense_162 (Dense)            (None, 512)               313856     
_________________________________________________________________ 
dropout_20 (Dropout)         (None, 512)               0          
_________________________________________________________________ 
dense_163 (Dense)            (None, 1)                 513        
================================================================= 
Total params: 314,513 
Trainable params: 314,513 

Non-trainable params: 0 

IV. Results 

   Model Evaluation and Validation 

All the measurements listed in the section "Metrics" were used to evaluate the perfomance of models. 

The best indicators for ensemble algorithms. 

<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>  
Numeric Features; Gradient Boosting Regressor  
<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_> 
EV score. Train:  0.86189746402 
EV score. Test:  0.720854054972 
---------- 
R2 score. Train:  0.86189746402 



 

 

R2 score. Test:  0.720764275765 
---------- 
MSE score. Train:  0.251150449123 
MSE score. Test:  0.558723845618 
---------- 
MAE score. Train:  0.31458911313 
MAE score. Test:  0.400128339345 
---------- 
MdAE score. Train:  0.174402117839 
MdAE score. Test:  0.199730980341 

The best indicators for neural networks. 

<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>  
Numeric Features; CNN Model 
<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>  
EV score. Train:  0.735439071809 
EV score. Test:  0.711557145756 
---------- 
R2 score. Train:  0.735350946162 
R2 score. Test:  0.711347161402 
---------- 
MSE score. Train:  0.481285359893 
MSE score. Test:  0.577566586338 
---------- 
MAE score. Train:  0.400953623408 
MAE score. Test:  0.427550065202 
---------- 
MdAE score. Train:  0.214423935148 
MdAE score. Test:  0.22883767204 
 

In the analysis, I did not exclude outliers in general, so the special sensitivity of models to the addition of 
other data (including noises or outliers) should not be expected. It can be confirmed by applying the 
algorithms for the whole dataset. As it can be seen this experiment has very similar results with the smaller 
training set. 

<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_>  
 Gradient Boosting Regressor  
<_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_><_> 
EV score: 0.851729559483 
---------- 
R2 score: 0.851729559483 
---------- 
MSE score: 0.273663122104 
---------- 
MAE score: 0.324355312761 
---------- 
MdAE score: 0.17539487972 

The correlation coefficient between predictions and real values within 0.69-0.72 in the test case is high 
enough for a real data set (more than 0.6). During work over the project, I had the impression that the 
coefficient cannot be improved above 0.75 in the test case for this particular data using any algorithms. 

   Justification 

Participation of the project in the competition allowed to improve the constructed models, compare indicators 
and algorithms with other competitors, discuss the process and evaluate the results. The competition metric 
was the RMSLE (Root Mean Squared Logarithmic Error). I did not use it in my work but my models 
demonstrated enough well results by this evaluation method also. It confirmed the effectiveness of algorithms 
again. 

The winner had the RMSLE = 0.30087, I had the RMSLE = 0.32766. 

The indicators of two best algorithms in this project are not too far from the indicators of the competition 
winner and serve me as a guide to improve the parameters of other designed models. As a result, a whole set 
of models yields very similar final predictions and values of metrics. 

V. Conclusion 



 

 

   Free-Form Visualization 

As a final visualization, I chose the image of the predictions of all models on a single graph. As it can be seen 
from the illustrations, the predictions are very close to each other and determine the overall price dynamics 
quite clearly. This is an additional confirmation of the reliability of predictions: in case of erroneous 
conclusions, all models would hardly have demonstrated the same trend. 

 

 

 

Pic. 4. Display all predictions 

   Reflection 

The prediction of financial values is quite complex due to the strong dependence of the indicators on each 
other, the influence of the time factor and uncertainty. To achieve a greater approximation to real data is one 
of the closest and achievable tasks of machine learning. 

The project database is similar to the well-known and well-studied the Boston Housing Dataset. Therefore, it 
was easy to start implementing the project by applying similar methods. In the course of working on the 
project, I experienced much more regression algorithms and neural networks than presented in the program 
part, then just shortened the list, leaving the most effective. Working on the data also did not present any 
particular difficulties: firstly I cleaned and reduced the base, then tried to use only the numerical variables, 
and finally added categorical ones and compared the results. 



 

 

The most interesting aspect for me was to work with the project precisely because of the large range of 
variables in real data and the possibility to advance the understanding this field of activity.  

In general, the project implementation process included the following steps: data processing and choice of 
variables, application of ensemble methods, improvement of their parameters, construction of neural networks 
and their development, model evaluation by metrics and a unified representation of all predictions. 

    Improvement 

There are many possible ways to improve the modeling: studying of other sets of variables (maybe some 
variables with important information were lost), combining of existing algorithms in ensembles (to catch the 
trend more effective), developing the architecture of built neural networks in the project (improving structures 
allow to analyze more deeply), applying the existing neural networks with a complex structure from the 
external sources (for the same reason), etc. 
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