%%html
<style>
@import url('https://fonts.googleapis.com/css?family=Orbitron|Roboto');
body {background-color: #add8e6;}
a {color: darkblue; font-family: 'Roboto';}
h1 {color: steelblue; font-family: 'Orbitron'; text-shadow: 4px 4px 4px #aaa;}
h2, h3 {color: #483d8b; font-family: 'Orbitron'; text-shadow: 4px 4px 4px #aaa;}
h4 {color: slategray; font-family: 'Roboto';}
span {text-shadow: 4px 4px 4px #ccc;}
div.output_prompt, div.output_area pre {color: #483d8b;}
div.input_prompt, div.output_subarea {color: darkblue;}
div.output_stderr pre {background-color: #add8e6;}
div.output_stderr {background-color: #483d8b;}
</style>
import keras
from keras.datasets import cifar10
# load the pre-shuffled train and test data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
fig = plt.figure(figsize=(20,5))
for i in range(36):
ax = fig.add_subplot(3, 12, i + 1, xticks=[], yticks=[])
ax.imshow(np.squeeze(x_train[i]))
# rescale [0,255] --> [0,1]
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
from keras.utils import np_utils
# break training set into training and validation sets
(x_train, x_valid) = x_train[5000:], x_train[:5000]
(y_train, y_valid) = y_train[5000:], y_train[:5000]
# one-hot encode the labels
num_classes = len(np.unique(y_train))
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
y_valid = keras.utils.to_categorical(y_valid, num_classes)
# print shape of training set
print('x_train shape:', x_train.shape)
# print number of training, validation, and test images
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print(x_valid.shape[0], 'validation samples')
from keras.preprocessing.image import ImageDataGenerator
# create and configure augmented image generator
datagen_train = ImageDataGenerator(
width_shift_range=0.1, # randomly shift images horizontally (10% of total width)
height_shift_range=0.1, # randomly shift images vertically (10% of total height)
horizontal_flip=True) # randomly flip images horizontally
# create and configure augmented image generator
datagen_valid = ImageDataGenerator(
width_shift_range=0.1, # randomly shift images horizontally (10% of total width)
height_shift_range=0.1, # randomly shift images vertically (10% of total height)
horizontal_flip=True) # randomly flip images horizontally
# fit augmented image generator on data
datagen_train.fit(x_train)
datagen_valid.fit(x_valid)
import matplotlib.pyplot as plt
# take subset of training data
x_train_subset = x_train[:12]
# visualize subset of training data
fig = plt.figure(figsize=(20,2))
for i in range(0, len(x_train_subset)):
ax = fig.add_subplot(1, 12, i+1)
ax.imshow(x_train_subset[i])
fig.suptitle('Subset of Original Training Images', fontsize=20)
plt.show()
# visualize augmented images
fig = plt.figure(figsize=(20,2))
for x_batch in datagen_train.flow(x_train_subset, batch_size=12):
for i in range(0, 12):
ax = fig.add_subplot(1, 12, i+1)
ax.imshow(x_batch[i])
fig.suptitle('Augmented Images', fontsize=20)
plt.show()
break;
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=2,
padding='same', activation='relu',
input_shape=(32, 32, 3)))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=32, kernel_size=2,
padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=64, kernel_size=2,
padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.summary()
# compile the model
model.compile(loss='categorical_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])
from keras.callbacks import ModelCheckpoint
batch_size = 128
epochs = 10
# train the model
checkpointer = ModelCheckpoint(filepath='aug_model.weights.best.hdf5', verbose=1,
save_best_only=True)
model.fit_generator(datagen_train.flow(x_train, y_train, batch_size=batch_size),
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs, verbose=2, callbacks=[checkpointer],
validation_data=datagen_valid.flow(x_valid, y_valid, batch_size=batch_size),
validation_steps=x_valid.shape[0] // batch_size)
# load the weights that yielded the best validation accuracy
model.load_weights('aug_model.weights.best.hdf5')
# evaluate and print test accuracy
score = model.evaluate(x_test, y_test, verbose=0)
print('\n', 'Test accuracy:', score[1])
This may give you some insight into why the network is misclassifying certain objects.
# get predictions on the test set
y_hat = model.predict(x_test)
# define text labels (source: https://www.cs.toronto.edu/~kriz/cifar.html)
cifar10_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
# plot a random sample of test images, their predicted labels, and ground truth
fig = plt.figure(figsize=(20, 8))
for i, idx in enumerate(np.random.choice(x_test.shape[0], size=32, replace=False)):
ax = fig.add_subplot(4, 8, i + 1, xticks=[], yticks=[])
ax.imshow(np.squeeze(x_test[idx]))
pred_idx = np.argmax(y_hat[idx])
true_idx = np.argmax(y_test[idx])
ax.set_title("{} ({})".format(cifar10_labels[pred_idx], cifar10_labels[true_idx]),
color=("green" if pred_idx == true_idx else "red"))