$(a + bi) + (c + di) = (a + c) + (b + d)i$
Вычитание комплексных чисел$(a + bi) - (c + di) = (a - c) + (b - d)i$
Умножение комплексных чисел$(a + bi) * (c + di) = (ac - bd) + (ad + bc)i$
Деление комплексных чисел$\large{\frac{a + bi}{c + di} = \frac{(a + bi) * (c - di)}{(c + di) * (c - di)} = \frac{ac+ bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i}$
Активируйте этот код перед использованием любых ячеек Linked Sage Cells
Активируйте этот код перед использованием любых ячеек Linked Python Cells
Активируйте этот код перед использованием любых ячеек Linked R Cells
$z^k = [r * (\cos \varphi + i \sin \varphi)]^n = r^n * [\cos(n\varphi) + i \sin(n\varphi)]$
Умножение комплексных чисел в тригонометрической форме:$z_1 * z_2 = r_1 * (\cos \varphi_1 + i \sin \varphi_1) * r_2 * (\cos \varphi_2 + i \sin \varphi_2) = r_1r_2 * [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)]$
Деление комплексных чисел в тригонометрической форме:$\frac{z_1}{z_2} = \frac{r_1 * (\cos \varphi_1 + i \sin \varphi_1)} { r_2 * (\cos \varphi_2 + i \sin \varphi_2)} = \frac {r_1}{r_2} * [\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)]$
Извлечение корня из комплексного числа в тригонометрической форме:$\sqrt[n] {z} = \sqrt[n] {r * (\cos \varphi + i \sin \varphi)} = \sqrt[n]{r} * \bigg(\cos \frac{\varphi + 2\pi m}{n} + i \sin \frac{\varphi + 2\pi m}{n} \bigg), \ m = 0, 1, ..., n-1$
$\mathscr{Z_1 = -\sqrt{2 - \sqrt{3}} + \sqrt{2 + \sqrt{3}} i; \ Z_2 = \sqrt{3} + i; \ Z_3 = -1 + i}$
$\mathbb{Z_1^{10} * Z_2^6, \ Z_2^{15} \ / \ Z_3^{27}, \sqrt[4] {Z_1}}$